Announcements

HW #2 due today.

After t = T/4, diode OFF, capacitor discharge via R, $v_O(t)$ slowly decreases (exponentially), until in the next period, $v_S(t)$ becomes larger than $v_O(t)+V_{on}$ again

of diode on
$$V_P - V_{\rm on}$$
 of diode on $V_P - V_{\rm on}$ of V_X of V_X of V_X of V_X of V_Y of V_X of V_Y of V_Y

- At time point $t = \frac{5T}{4} \Delta T$, we have, $v_S(t) = v_O(t) + V_{\text{on}}$
- Thus: $V_P \sin \omega (T/4 \Delta T) = (V_P V_{\rm on}) \exp \left(-\frac{T \Delta T}{RC}\right) + V_{\rm on}$
- ΔT can be solved numerically.

- Approx #1: RC large, $v_O(t)$ drops slowly and thus linearly:
- Between $\frac{T}{4} < t < \frac{5T}{4} \Delta T$,

$$v_O(t) = (V_P - V_{\text{on}}) \left(1 - \frac{t - \frac{T}{4}}{RC}\right)$$

$$\exp(\epsilon) \cong 1 + \epsilon \text{ if } \epsilon \ll 1 \ (T \ll RC)$$

- Approx #2: Conduction time ΔT much smaller than T ($\Delta T \ll T$)
- Ripple voltage: $V_r = v_O\left(\frac{T}{4}\right) v_O\left(\frac{5T}{4} \Delta T\right) \approx \frac{V_P V_{\text{on}}}{RC}T$
- Equivalent DC current: $I_{dc} = \frac{V_P V_{\rm on}}{R}$

- To Find ΔT , look at time point $t_2 = \frac{5T}{4} \Delta T$:
- $\bullet \ v_S(t_2) V_{\rm on} = V_x$

- $V_x = V_P V_{\text{on}} V_r = (V_P V_{\text{on}})(1 \frac{T}{RC})$ (1)
- $V_{\chi} = V_P \sin \omega \left(\frac{5T}{4} \Delta T\right) V_{\text{on}} = V_P \cos \omega \Delta T V_{\text{on}} \approx V_P \left(1 \frac{[\omega \Delta T]^2}{2}\right) V_{\text{on}}$ 2
- 1 = 2 => $\Delta T = \frac{1}{\omega} \sqrt{\frac{2V_r}{V_P}}$ => conduction angle: $\theta_c = \omega \Delta T = \sqrt{\frac{2V_r}{V_P}}$

Diode Currents

Charge lost due to discharging replenished by charging current during ΔT :

$$Q = I_{dc}T \approx I_P \frac{\Delta T}{2}$$

$$\Rightarrow I_P \approx I_{dc} \frac{2T}{\Delta T}$$

 I_P usually large (tens of A!)

 Initial surge current even larger (> 100 A!)

$$I_{SC} = \omega C V_P$$

Series resistances reduce this current

Diode Peak-Inverse-Voltage (PIV) Rating

• PIV
$$\geq V_{dc} - v_I^{\min} = V_P - V_{on} - (-V_P) \approx 2V_P$$

PIV corresponds to the minimum value of Zener breakdown voltage for the rectifier diode.

Safety margin of 25-50 % is usually specified for the diode PIV.

$$V_Z > (1 + SM)2V_P$$

Example: HWR w/ RC Load

- Equivalent DC current: $I_{dc} = \frac{V_P V_{on}}{R} = 2.28 \text{ mA}$
- Conduction angle: $\theta_c = \omega \Delta T = \sqrt{\frac{2V_r}{V_P}} = 0.25 \text{ rad}, \Delta T = 0.04 T$
- $I_P \approx I_{dc} \frac{2T}{\Delta T} = 114 \text{ mA}; \ I_{SC} = \omega C V_P = 0.45 A$